
PythonTip 01 - Functions (after-class-version)

January 26, 2026

1 Python Tip #1: Functions
Functions are separately defined code snippets that you can then use in your main code.

[1]: def double(number): # arguments = input
new_number = 2*number
return new_number

[2]: double(5)

[2]: 10

[3]: def add_up_list(L):
total = 0
for l in L:

total += l
return total

[4]: add_up_list([3,7,1])

[4]: 11

[]:

[5]: def print_hello():
print("hello")

[6]: print_hello()

hello

[7]: x = print_hello()

hello

[8]: print(x)

None

1

[9]: def double(number=7): # number will default to 7 if you don't specify it
new_number = 2*number
return new_number

[10]: double()

[10]: 14

[11]: double(5)

[11]: 10

[12]: double(number=5)

[12]: 10

[]:

“Lambda Functions” sound very fancy, but they are just a quicker way to define very simple
functions.

double = lambda x : 2*x

[name] = lambda [inputs] : [outputs]

[13]: new_double = lambda number : 2*number
new_double(5)

[13]: 10

[14]: combine = lambda x, y: 2*x + 3 * y**2

[15]: combine(5,2)

[15]: 22

[]:

They are often useful (as we’ll see later) for extracting one component of a tuple or list.

[16]: second_component = lambda r : r[1]

[17]: second_component([5, -8, 1])

[17]: -8

This is totally equivalent to:

def second_component(r):
return r[1]

2

This is mostly useful when you just want to use the function in one spot, and not define it forever.

When sorting a list, you can give it a “key” function to tell it what to sort by.

[18]: L = [-5, 1, 0, 7, -10]
print(L)
L.sort()
print(L)

[-5, 1, 0, 7, -10]
[-10, -5, 0, 1, 7]

[20]: L.sort(key=lambda x : abs(x))
print(L)

[0, 1, -5, 7, -10]

[]:

[]:

[23]: L = [(0, 3), (-1, 7), (0, 1), (2, 5)]

[24]: sorted(L)

[24]: [(-1, 7), (0, 1), (0, 3), (2, 5)]

[26]: second_component = lambda x : x[1]

[27]: sorted(L, key=second_component)

[27]: [(0, 1), (0, 3), (2, 5), (-1, 7)]

[28]: sorted(L, key=lambda x : x[1])

[28]: [(0, 1), (0, 3), (2, 5), (-1, 7)]

[]:

3

	Python Tip #1: Functions

