PythonTip 01 - Functions (after-class-version)

January 26, 2026

1 Python Tip #1: Functions

Functions are separately defined code snippets that you can then use in your main code.

[1]: |def double(number): # arguments = input
new_number = 2*number
return new_number

[2] : double(5)
[2]: 10

[3]: def add_up_list(L):
total = 0
for 1 in L:
total += 1
return total

[4]: add_up_list([3,7,1])
[4]1: 11
[1]:

[6]: def print_hello():
print("hello")

[6]: print_hello()
hello

[7]1: x = print_hello()
hello

[8]: print(x)

None

[9]: def double(number=7): # number will default to 7 if you don't specify it

new_number = 2*number
return new_number

[10]: double()

[10]: 14

[11]: double(5)

[11]: 10

[12]: double(number=5)

[12]: 10

[1:

“Lambda Functions” sound very fancy, but they are just a quicker way to define very simple
functions.

double = lambda x : 2%x

[name] lambda [inputs] : [outputs]

[13]: new_double = lambda number : 2*number
new_double(5)

[13]: 10

[14]: combine = lambda X, y: 2%x + 3 * y**2

[15]: combine(5,2)

[156]: 22

L1:

They are often useful (as we’ll see later) for extracting one component of a tuple or list.

[16]: second_component = lambda r : r[1]
[17]: second_component([5, -8, 1])
[17]: -8

This is totally equivalent to:

def second_component(r):
return r[1]

This is mostly useful when you just want to use the function in one spot, and not define it forever.

When sorting a list, you can give it a “key” function to tell it what to sort by.

[(18]: L = [-5, 1, 0, 7, -10]
print (L)
L.sort()
print (L)

[-5, 1, 0, 7, -10]
[-10’ _5’ O’ 1, 7]

[20]: L.sort(key=lambda x : abs(x))
print (L)

[Oy 1’ _5’ 7’ _1O]

[1:

[1:

[23]: L = [(0, 3), (-1, 7), (O, 1), (2, B)]
[24] : | sorted(L)

[24]: [(-1, 7), (0, 1), (0, 3), (2, B)]
[26]: second_component = lambda x : x[1]
[27]: sorted(L, key=second_component)

[27]: [(0, 1), (O, 3), (2, 5), (-1, 7)]
[28]: sorted(L, key=lambda x : x[1])

[28]: [(0, 1), (0, 3), (2, B), (-1, 7)]

[]:

	Python Tip #1: Functions

